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ABSTRACT 

This project explores architectures for the digital design of a direct digital frequency 

synthesizer (DDFS). This generates sine and cosine waveforms. The proposed DDFS is based 

on a Modified CoORDinate DIgital Computer (CORDIC) algorithm. The algorithm, through 

successive rotations of a unit vector, computes sine and cosine of an input angle θ. Each 

rotation is implemented by a CORDIC element (CE). 

Coordinate Rotation Digital Computer (CORDIC) algorithm has greatly improved the 

efficiency of the hardware implementation of digital signal processing algorithms and other 

mathematical operations. While there exist quite a lot of redundant iterations in the 

Conventional CORDIC algorithm, this project proposes a novel efficient modified CORDIC 

algorithm combining the Conventional CORDIC algorithm with the modified CORDIC 

algorithm. 

 

Key words: - CORDIC, DDFS, Time shared architecture
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CHAPTER 1 

   INTRODUCTION 

1.1 Generation of sine and cosine waves: - 

The sine wave or cosine wave is a naturally occurring signal shape in communications 

and other electronic applications. Many electronic products use signals of the sine wave form. 

Audio, radio, and power equipment usually generates or processes sine and cosine waves. As 

it turns out, there are literally dozens of ways to generate a sine wave. Some of the popular 

methods used for generation of sine and cosine waves are: 

1. Wien bridge oscillator 

2. Phase shift oscillator 

3. Colpitts crystal oscillator 

4. Square wave and filter 

5. Function generator 

6. Pulse based sine and cosine wave generators 

7. Direct digital synthesis 

1.1.1 Wien bridge oscillator: - 

A popular low frequency (audio, and up to about 100 kHz or so) sine wave oscillator 

is the Wien bridge shown in below figure. 

 

Fig 1.1 Wien bridge oscillator 
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It uses an RC network that produces a zero-degree phase shift from output back to the 

input, producing positive feedback that, in turn, produces oscillation. An op-amp is used to 

produce a gain of three that offsets the attenuation of the RC network. With a net closed loop 

gain of one, the circuit oscillates at a frequency determined by the values of the RC network: 

f = 1/2πRC 

This circuit works great and produces a very clean low distortion sine wave. Its 

problem is that instabilities in the gain and phase can cause the circuit to go out of oscillation 

completely, or go into saturation producing a clipped sine wave or square wave. Some 

compensation components are usually added to eliminate this problem.  

A simple solution is to replace R1 with a small incandescent bulb whose resistance 

changes with current. As the output goes up, the bulb current and resistance increases, and 

reduces the gain to compensate. If the output goes down, the current decreases, lowering the 

resistance and increasing the gain to keep the output constant. One working example is to 

make R2 390 ohms and R1 a type 327 bulb. Other more elaborate schemes use an FET as a 

variable resistor to vary the gain. This circuit works and has a frequency of about 1,592 Hz. 

Output amplitude depends on the power supply voltages. 

1.1.2 Phase shift oscillator: - 

A popular way to make a sine or cosine wave oscillator is to use an RC network to 

produce a 180-degree phase shift to use in the feedback path of an inverting amplifier. Setting 

the gain of the amplifier to offset the RC network attenuation will produce oscillation. There 

are multiple variations of phase shifters, including a Twin-T RC network and cascaded RC 

high pass sections that produce either 45 or 60 degree shifts in each stage. The amplifier can 

be a single transistor, single op-amp, or multiple op-amps. Below figure shows phase shift 

oscillator. 

 

Fig 1.2 Phase shift oscillator 
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These oscillators produce a very pure low distortion sine wave. However, the frequency is 

fixed at the point where each RC section produces a 60-degree phase shift. That approximate 

frequency is: 

f = 1/2.6RC 

In the circuit shown above, the frequency should be about 3.85 kHz. 

1.1.3 Colpitts crystal oscillator: - 

Quartz crystals are often used to set the frequency of an oscillator because of their 

precise frequency of oscillation and stability. The equivalent circuit of a crystal is a series or 

parallel LC circuit. Below figure shows sine wave oscillator of the Colpitts type, as identified 

by the two-capacitor feedback network. 

 

Fig 1.3 Colpitts crystal oscillator 

This is another widely used circuit because it’s easy to implement and very stable. Its 

useful frequency range is approximately 100 kHz to 40 MHz. The output is a sine wave with 

a slight distortion. By the way, if you need a crystal oscillator with a sine wave out, you can 

usually buy a commercial circuit. They are widely available for almost any desired frequency. 

They are packaged in a metal can and are the size of a typical IC. The DC supply is usually 

five volts. 

1.1.4 Square wave and filter: - 

An interesting way to produce a sine wave is to select it with a filter. The idea is to 

generate a square wave first. As it turns out, it’s often easier to generate a square wave or 

rectangular wave than a sine wave. According to Fourier theory, the square wave is made up 

of a fundamental sine wave and an infinite number of odd harmonics. 
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For example, a 10 kHz square wave contains a 10 kHz sine wave, and sine waves at 

the 3rd, 5th, 7th, etc., harmonics of 30 kHz, 50 kHz, 70 kHz, and so on. The idea is to connect 

the square wave to a filter that selects the desired frequency. 

 

Fig 1.4 Square wave filter 

A CMOS 555 timer IC produces a 50% duty cycle square wave. Its output is sent to a low 

pass RC filter that filters out the harmonics, leaving only the fundamental sine wave. Some 

distortion is common as it’s difficult to completely eliminate the harmonics. A more selective 

LC filter can be used to improve sine wave quality. Keep in mind that you can also use a 

selective band pass filter to pick out one of the harmonic sine waves. This circuit is designed 

for a frequency of 1,600 Hz 

1.1.5 Function generator: - 

A function generator is the name for a device that generates sine, square, and triangle 

waves. It may describe a piece of bench test equipment or an IC. One old but still good 

function generator IC is the XR-2206. It was first made by Exar in the 1970s, but is still 

around. If you need a sine wave generator that can be set to any frequency in the 0.01 Hz to 

1 MHz or more, take a look at the XR-2206. Figure below shows the XR-2206 connected as 

a sine wave generator. 
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Fig 1.5 Function generator 

The frequency is set by R and C and is calculated with the expression: 

f = 1/RC 

The internal oscillator generates a square wave and a triangle wave. The sine shaper circuit 

takes the triangle wave and modifies it into a sine wave. This is still a great chip. Besides the 

three common waveforms it generates, it can amplitude or frequency modulate them as well. 

1.1.6 Phase-based sine wave generators: - 

There are several other clever ways to make an approximate sine wave from pulses 

and filters. One way is to simply add together two square waves of the same amplitude where 

one is shifted 90 degrees from the other. A pair of JK flip-flops driven from opposite phase 

clock pulses can produce the two square waves to be added. 

 

Fig 1.6 Phase-based sine wave generator 
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The result is a signal that can be used in some applications to replace a sine wave. 

Some crude DC-to-AC inverters use this method. The effect is an average power similar to 

what a sine wave would deliver to a load. Some RC or LC filtering can smooth the wave into 

a more continuous sine-like shape. 

An interesting technique uses a sequence of varying width pulses that are filtered into 

a sine wave. If you apply a square wave with equal on and off times to a low pass filter, the 

output will be an average of pulse voltage over the on-off period. With a five-volt pulse, the 

average output over the full cycle of the wave would be 2.5 volts. By varying the pulse 

duration or width, different average voltages can be produced. 

1.1.7 Direct digital synthesis: - 

An interesting way to produce a sine wave is to do it digitally. Direct digital synthesis is one 

such technique. It begins with a read-only memory (ROM) that stores a series of binary values 

that represent values that follow the trigonometry equation for a sine wave. These values are 

then read out of the ROM one at a time and applied to a digital-to-analog converter (DAC). 

A clock signal steps an address counter that then accesses the sine values in ROM 

sequentially, and sends them to the DAC. The DAC generates an analog output signal that is 

proportional to the binary value from the ROM. What you get is a stepped approximation of 

a sine wave. 

 

Fig 1.7 Direct Digital Synthesis 
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Direct digital frequency synthesizer is a direct digital synthesis method which is used to 

generate finest sine and cosine waves. This project mainly concentrates on direct digital 

frequency synthesizer (DDFS) and its working. Methods used in its architectures and 

refinements to the DDFS and CORDIC algorithm and at last a CORDIC based DDFS 

architecture. 

1.2 Direct digital frequency synthesizer (DDFS): - 

  Direct Digital Frequency synthesizer: A DDFS an integral component of high-

performance communication system. A DDFS generates a spectrally pure sine and cosine for 

quadrature mixing and frequency and phase correction in a digital receiver. A DDFS is 

characterized by its spectral purity. A measure of spectral purity is the spurious free dynamic 

Range (SFDR). 

  It is defined as the ratio of amplitude of the desired frequency to the highest frequency 

component of undesired frequency. The concept of DDFS was first project by J. Tierney in 

1971.A DDFS can provide fast switching and high Frequency resolution, over a wide band of 

frequency. A major advantage of a direct digital synthesizer is that its output frequency, phase 

and amplitude can be precisely and rapidly manipulated under digital processor control. The 

DDFS addresses a variety of applications including Cable moderns, measurement equipment, 

arbitrary waveform. Direct digital Frequency synthesizer also known as Numerically 

controlled Oscillator (NCO) There are different methods of sine/cosine generation are 

reported with different merit and their limitations. These are with memory, reduced memory 

and memory less architecture. Few are DDFS with LUT, DDFS with sine and cosine function, 

interpolation based and parabola-based Taylor series based DDFS 

1.3 CORDIC algorithm 

This algorithm was developed by Volder in 1959 for computing the rotation of a vector 

in the Cartesian coordinate system. Initially DDFS architecture is implemented using Look 

Up Tables (LUT’s) and also several algorithms and techniques have been proposed that 

reduce or complexity eliminate look up tables in memories. An efficient algorithm is 

CORDIC, (Coordinate Rotational Digital Computer) which uses rotation of vectors in 

Cartesian coordinates to generate angles of sine and cosine. This method also extended for 

computation of hyperbolic functions, exponentials and algorithms. Operations required in 

cordic algorithm are addition, subtraction, bit shift and it also uses very few look up tables. 
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1.4 Applications of CORDIC: -                   

Cordic has a variety of applications and widely used in our day-to-day life some of the 

applications of cordic algorithm are mentioned below: 

• Signal And Image Processing 

• Communication Systems 

• Robotics 

• 3D Graphs 

• 8087 math co-processor  

• HP 35 calculator 

• Aerospace Application 

• Different DSP And DIP Filters 

• Network Security  

• Biometric 

• RADAR signal processor  

1.5 Applications of DDFS: -    

DDFS has a wide range of applications. It is used for communication, 

instrumentation, lab-on-chip, electronic measuring device etc.… it has a huge advantages 

of low power consumption, tunable frequency with sub hertz resolution, fast frequency 

switching and simple design. 

 The ability to generate arbitrary frequencies with accuracy and stability, limited only 

by the oscillator used to clock the phase accumulator. Crystal oscillators, depending on their 

specifications, can deliver tolerances of 50 parts per million to ~0.1 part per billion, making 

DDFS extremely accurate. Analog signal generators can only deliver accuracy and stability 

of a few tenths of a percent unless using a high-end device. 

The frequencies provided by DDFS are repeatable. Loading the tuning word register 

with the value corresponding to frequency F1 generates a signal at frequency F1. If the 

tuning register is then loaded with the value for frequency F2, the output signal is quickly 

changed to frequency F2. When the tuning register is reloaded with the value for F1, the 
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exact the same frequency F1 is provided as was generated before. Analog generators can't 

guarantee this precision. 

High frequency resolution can be achieved with the digital techniques used in DDFS. 

Increasing the resolution is as simple as adding more bits to the least significant end of the 

phase accumulator and tuning register. Analog waveform generators, which depend on 

mechanical components like potentiometers and variable capacitors to tune the oscillator, 

are limited in the resolution they can provide. 

This ability to quickly change the output frequency with precision is also essential in 

communication techniques like spread-spectrum frequency hopping where radio signals are 

transmitted by rapidly switching a carrier among many frequency channels. Being able to 

reproduce exact frequencies and deliver frequency changes quickly forms the basis of the 

modulation technique. 
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CHAPTER 2 

DIRECT DIGITAL FREQUENCY SYNTHESIZER 

2.1 Design of basic DDFS  

Direct digital frequency synthesis (DDFS) is a method of producing an analog 

waveform—usually a sine wave— by generating a time-varying signal in digital form and 

then performing a digital-to-analog conversion. The operations within a DDFS device are 

primarily digital, therefore, it can offer fast switching between output frequencies, fine 

frequency resolution, and operation over a broad spectrum of frequencies. The digital 

frequency synthesis approach employs a stable source frequency i.e., reference clock to define 

times at which digital sinusoidal sample values are produced. These samples are converted 

from digital to analog format and smoothed by reconstruction filter to produce analog 

frequency signals A Standard DDFS architecture consists of a phase accumulator, a ROM / 

lookup table, a DAC and some reconstruction filters. The phase accumulator combines the 

reference frequency and the value in the tuning word register. The output from the DAC is 

usually applied to filters to smooth the waveform and remove any extraneous output. 

2.1.1 Accumulator: - 

An accumulator in the DDFS keeps computing the next angle for the CORDIC to 

compute the sine and cosine values. 

2.1.2 ROM or look up table: - 

ROM serves as a lookup table, converting its index (phase) input to sine or cosine 

amplitude samples 

2.1.3 DAC on Digital to analog convertor: - 

It converts the digital value to its corresponding analog voltage output. 

2.2 working of DDFS architecture: - 

The tuning word is used to change the output frequencies during operation. The tuning 

word is a binary value held in the tuning register. The value of the tuning word is added to the 

phase accumulator with every clock update. For example, if the tuning word is set to 1, every 

clock interval increments the phase accumulator by 1. Setting the tuning word to 2, every 

clock cycle increments the phase accumulator by 2. Since the phase accumulator provides the 

phase value for the phase-amplitude lookup, the tuning word controls the number of values 
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retrieved from the phase-amplitude table for a cycle. With a tuning word of 1, every value in 

the table is retrieved. A tuning word of 2 reads every other value and also causes the 

accumulator to clock through to zero twice as fast, with the result that the output frequency 

has been doubled. 

As an example, consider a DDFS designed with a phase-amplitude table of 360 entries, 

holding the amplitude (voltage) values for each one of the 360 degrees of a sine wave. The 

accumulator resets after 360 clock cycles. The reference frequency will be pulled from the 

system clock, so everything is clocked and updated at the same rate. With a tuning word of 1, 

the phase accumulator is incremented by 1 for every clock, and the table values are retrieved 

in order. Every 360 reference clocks, the accumulator resets and another waveform are 

created. Setting the tuning word to 2 has the result of reading every other value from the 

phase-amplitude table; the accumulator clocks through twice as fast and the output frequency 

is doubled. Of course, using only 360 values would produce a choppy output and the jitter 

would make it unusable. DDFS systems typically have phase-amplitude tables with thousands 

of data points and 16-bit registers for the tuning register and phase accumulators. A frequency 

control word W in every clock cycle of frequency 𝒇𝒄𝒍𝒌 is added in an N bit phase accumulator. 

If W=1, it takes the clock 𝟐𝑵 cycles to make the accumulator overflow and starts again. The 

DDFS can generate any frequency 𝒇𝟎 by an appropriate selection of W using 

                                                                     𝒇𝟎 = W* 𝒇𝒄𝒍𝒌/𝟐
𝑵 

The above equation is called as DDFS “tuning frequency”. The digital signals cos 

(𝝎𝟎𝒏) and sin (𝝎𝟎𝒏) can be input to a D/A converter at sampling rate T = 1/ 𝒇𝒄𝒍𝒌  for 

generating analog sinusoids of frequency 𝒇𝟎. The maximum frequency from the DDFS is 

constrained by the Nyquist sampling criterion equal to 𝒇𝒄𝒍𝒌/𝟐  
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Fig 2.1 Design of basic DDFS 

2.3 Phase accumulator  

A binary phase accumulator consists of an N bit binary adder and register and each 

block produces a new N bit output consisting of the previous output obtained from the 

register sum, with the frequency control word (FCW). The resulting output wave form is a 

staircase with some stem size The phase accumulator (PA) is basically a counter that 

increments its digital output value each time it receives a clock pulse the magnitude of the 

increment to determine by the binary coded input (W). This word forms the phase step size 

between reference clock updates; it effectively sets how many points to skip around the 

phase wheel. The larger the jump size, the faster the phase accumulator overflows and 

completes the equivalent of a sine-wave cycle. The number of discrete phase points 

contained in the wheel is determined by the resolution of PA (n bits) which determines the 

tuning resolution of the DDFS. 

for example: -for an n = 28-bit phase accumulator will have a value of 0000…0001, 

which would cause the phase accumulator to overflow after 𝟐𝟐𝟖  reference clock cycles 

increments. With the value of w is changed to 0111…1111, phase accumulator will 

overflow after only 2 reference - clock cycles. A change to the value of w results in 

immediate and phase continuous changes in the output Frequency. In a DDFS as the output 

frequency increased, the number of samples per cycle decreases. Since, sampling theory, 

dictates that at least two Samples per cycle are required to reconstruct the output waveform, 

the maximum fundamental output frequency of a DDFS is 𝒇𝒄𝒍𝒌/𝟐 However, for practical 

applications, the output frequency is limited to somewhat less than that, improving the 

quality of the reconstructed waveform and permitting filtering on the output when 

generating a constant frequency, the output of PA increases linearly 

2.4 Phase to amplitude converter: - (ROM or LUT) 

The DDFS's Rom is a sine Lookup converts digital phase input from the accumulator 

to output amplitude. The accumulator output represents the phase of the wave as well as an 

address to a word which is the corresponding amplitude of the phase in the LUT. This phase 

amplitude from the ROM LUT drive the PAC to provide an analog output. It is also called 

a digital phase-to-Amplitude convertor (PAC), or polar to rectangular transformation. (or) 
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sine waveform mapping device a memory. The lookup memory contains one cycle of the 

waveform to be generated. The size of LUT is 𝟐𝒏 words LUT translates truncated phase 

information being in digital form, into quantized numerical waveform samples. Some DDFS 

systems can be implemented with ROM (or) without ROM. The advantages of ROM less 

architecture can be seen when high bit accuracy is desired. The ROM LUT stores the values 

of phase amplitudes while ROM less amplitude architecture computes phase amplitudes. 

2.5 Digital to Analog convertor and filter:  

The phase accumulator computes a phase (angle) address for the look up table, which 

outputs the digital value of amplitude corresponding to the time of that phase angle to the 

DAC. The DAC, in turn converts the number to a corresponding value of analog voltage 

(or) current. The DAC adds the rest of the system run at the same reference clock for 

synchronisation The DAC adds quantization error at the output to the sine wave. It removes 

the extra frequency components added to the sine wave and hence produces a smooth sine 

wave. 

 

Fig.2.2 Block diagram of DDFS architectures                                  

Figure 2.3 shows a basic trigonometric phase diagram where a sine wave is shown as 

a projection from a circle representing the phase of the waveform. The maximum voltage 

amplitude for the sine wave is the radius of the circle. For this discussion, we'll take the 

maximum voltage to be one for simplicity. As the phase angle ϴ advances counter clockwise, 

there is a corresponding value of voltage. One complete rotation is 2*Pi radians. No matter 

how many times around, the same voltage corresponds a specific angle ϴ. The frequency of 
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the sine wave produced depends on how quickly rotations through 2*Pi are completed (the 

angular velocity, ω). 

 

Fig 2.3 phase diagram 

Figure 2.4 shows how for each phase, the specific voltage is sampled. The more points 

provided for the waveform by the sampling techniques used, the more definition the waveform 

has. The phase-amplitude table holds the phase/voltage points for each waveform and 

functions as phase to voltage converter. 

 

Fig 2.4 phase detail 

 



15 
 

 

Fig.2.3 waveform of different blocks of DDFS 

The above figure describes the different set of outputs obtained by the various blocks present 

in the DDFS architecture. The first waveform is the output obtained from phase accumulator. 

The next waveform is the phase amplitude converter output. The D/A converter is used to 

convert the digital signal to analog signal. The final output obtained is the sine wave came out 

from the filter output.  

EXAMPLE: - 

Let our required frequency be 𝑓𝑜 = 1𝑘ℎ𝑧 and let N=5 bits and for easy calculation 𝑓𝑐𝑙𝑘 =

32𝑘ℎ𝑧 

  Now                                                      𝑓0 = W*
𝑓𝑐𝑙𝑘

2𝑁
 

with the given values therefore,  

W=1 If initially, let N bit number be N=0000 This ‘N’ is used as an index to ROM, now o/p 

will be 0  

For next clk pulse, N = 00001 now o/p = 0.0871  

For next clk pulse, N = 00010 now o/p = 0.173  

For next clk pulse, N =00011 now o/p = 0.2588  

For next clk pulse, N = 00100 now o/p = 0.342. So, to generate a value of 200,it takes 4 cycles 

Sin (θ) address 

Sin (0) =0 0000 

Sin (5)   = 0.0871 0001 

Sin (10) = 0.173 0010 

Sin (15) = 0.2588 0011 

Sin (20) = 0.342 0100 

Table 2.1 Sine values stored in memory 
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CHAPTER 3 

Improved architecture of DDFS 

3.1 Design of DDFS with reduced ROM size 

 The basic design of DDFS is improved by exploiting the symmetry of sine 

and cosine waves. The output of the accumulator is truncated from N to L bits to reduce the 

memory requirement. A complete period of 0 to 2  of sine and cosine waves can be generated 

from values of the two signals from 0 to /4. The sizes of the two memories are reduced by 

one eighth by only storing the values of sine and cosine from 0 to /4 The L-3 bits are used 

to address the memories and then three most significant bits (MSBs) of the address are used 

to map the values to generate complete periods of cosine and sine. A ROM/RAM, based 

DDFS requires 2𝐿−3  deep memories of width M. The design takes up a large area and 

dissipates significant power 

 

                              3.1 Design of DDFS with reduced ROM size 

In reduced memory concept, L-3 bits are used to store the values of cosine and sine values 

from (0 to 𝝿/4) and ‘3’ most significant bits are used to map the values of remaining angles 

to the values stored in LUT’s i.e.  
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                       3 MSB bits                              values 

                         000                           0-𝝿/4 

                         001                           𝝿/4-𝝿/2 

                         010                           𝝿/2-3𝝿/4 

                         011                           3𝝿/4-𝝿 

                         100                            𝝿-5𝝿/4 

                         101                            5𝝿/4-3𝝿/2 

                         110                            3𝝿/2-7𝝿/4 

                         111                            7𝝿/4-2𝝿 

Table 3.1: - Storing of angle values w.r.t the MSB bits   

3.2 Spectral purity considerations 

The fidelity of a signal formed by recalling. samples of a sinusoid from a LUTs are 

affected by both the phase and amplitude quantization of the process. The length and width 

of the look-up table affect the signal's phase angle resolution and the signal's amplitude 

respectively. In conjuction with the system clock frequency. PA width determines the 

frequency resolution of the DDFS. The PA must have a sufficient field width to span the 

desired frequency resolution. For most practical application a large number of bits are 

allocated to the phase accumulator in order to satisfy the system frequency resolution 

requirements. 

3.3 CORDIC based DDFS architecture: - 

Several algorithms and techniques have been proposed that reduce or completely 

eliminate look up tables in memories an efficient algorithm is CORDIC which uses rotation 

of vectors in cartesian coordinates to generate value of sine and cosine. The CORDIC 

algorithm takes angle θ in radians, whereas the DDFS accumulator specifies the angle as an 

index. value. To use a CORDIC block in DDFS a CSD multiplier is required to convert index 

N to angle θ in radians 
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        Fig 3.2 CORDIC based DDFS architecture 

In the above figure cordic block needs an angle as an input and this angle is provided by the 

index to radian converter. Here the accumulator initially stores a certain value and W is a 

frequency control word which adds to the accumulator data and the result is stored in another 

accumulator register as the index (converted to required angle). So, at every clock pulse a new 

index is generated and this index is converted to an angle using the formula  

    θ =
index(N)

2𝑁
∗ 2π 

The cordic algorithm is one of the efficient algorithms and it generates the cosine and sine of 

angle in digital form and it is converted in analog form using digital to analog converter 

(DAC).  
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CHAPTER 4 

CORDIC Algorithm 

4.1 Introduction to CORDIC algorithm: - 

 The digital signal processing landscape has long been dominated by the 

microprocessors with enhancements such as single cycle multiply-accumulate instructions 

and special addressing modes. While these processors are low cost and offer extreme 

flexibility, they are often not fast enough for truly demanding DSP tasks. The advent of 

reconfigurable logic computers permits the higher speeds of dedicated hardware solutions at 

costs that are competitive with the traditional software approach. Unfortunately, algorithms 

optimized for these microprocessors-based systems do not map well into hardware. While 

hardware efficient solutions often exist, the dominance of the software systems has kept these 

solutions out of the spotlight. Among these hardware-efficient algorithms is a class of iterative 

solutions for trigonometric and other transcendental functions that use only shifts and adds to 

perform. The trigonometric functions are based on vector rotations, while other functions such 

as square root are implemented using an incremental expression of the desired function. 

  The trigonometric algorithm is called CORDIC an acronym for Coordinate 

Rotation Digital Computer. The incremental functions are performed with a very simple 

extension to the hardware architecture and while not CORDIC in the strict sense, are often 

included because of the close similarity. The CORDIC algorithms generally produce one 

additional bit of accuracy for each iteration. The trigonometric CORDIC algorithms were 

originally developed as a digital solution for real time navigation problems. 

 The original work is credited to Jack Volder. The CORDIC algorithm has 

found its way into diverse applications including the 8087-math coprocessor, the HP-35 

calculator, radar signal processors and robotics. CORDIC rotation has also been proposed for 

computing Discrete Fourier, Discrete Cosine, Singular Value Decomposition and solving 

linear systems. 

4.2 working of CORDIC algorithm: - 

The main idea of cordic algorithm is to rotate a unit vector continuously for a fixed 

number of times. And when that unit vector reaches a particular position in coordinate system 

its projection on x-axis(x-coordinate) gives cosine value of that angle and its projection on y-
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axis(y-coordinate) gives sine value of that angle. To bring a unit vector to the desired angle, 

the basic cordic algorithm undergoes certain recursive rotations. 

 

Fig.4.1 Unit vector circle 

Let initially the coordinates of vector be x(i), y(i) and after rotating the vector by an angle   be 

the new coordinates be x(i+1), y(i+1). 

 

                 Fig. 4.2 CORDIC algorithm incremental rotation by i+1 

Let x(i) = cosθ, y(i) = sinθ 

x(i+1) = cos (θ - 𝛼) 

therefore, x(i + 1) = 𝑥(𝑖) cos 𝛼 + 𝑦(𝑖) sin 𝛼…... (1) 

similarly, 

y(i+1) = sin (θ - 𝛼) 
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therefore, y (i + 1) = 𝑦(𝑖) cos 𝛼 − 𝑥(𝑖) sin 𝛼 …… (2) 

In the above example, our vector is rotational clockwise(downwards), but sometimes 

vectors may be rotated anticlockwise(upwards) then equations are 

𝑥(𝑖 + 1) = cos 𝛼. (𝑥(𝑖) − 𝑦(𝑖) tan𝛼) ... (3) 

 𝑦(𝑖 + 1) = cos 𝛼. (𝑥(𝑖) + 𝑦(𝑖) tan𝛼)... (4) 

But we can choose the rotation angles 𝛼1, 𝛼2,  … ., 𝛼𝑚 

So, choose                                 𝛼𝑖 =  𝑡𝑎𝑛−12−𝑖 

So that                                    tan 𝛼𝑖 = 2−𝑖 

Now the 𝑖𝑡ℎ step calculating (𝑥𝑖+1,  𝑦𝑖+1) from (𝑥𝑖 ,   𝑦𝑖)                                                                         

Equations 3, 4 Can be written as               

𝑥𝑖+1 = 𝑘𝑖(𝑥𝑖 − 𝑦𝑖𝑑𝑖2
−𝑖) … (5) 

𝑦𝑖+1 = 𝑘𝑖(𝑦𝑖 + 𝑥𝑖𝑑𝑖2
−𝑖) … (6) 

  where                  𝐾𝑖 = cos𝛼𝑖 = ⁡(cos(𝑡𝑎𝑛−12−𝑖) =
1

√(1+2−2𝑖)

 

  and                      𝑑𝑖 = ±1 

  which is determined by the direction of the necessary rotation 

 Now the product, for n = 10 rotations 

                         𝜋 𝑘𝑖 = 1/𝜋(√(1 + 2−2𝑖) = 0.6073 

For every rotation of a vector forms a new angle i.e. 

𝑧𝑖+1 = 𝑧𝑖 + 𝑑𝑖𝑡𝑎𝑛
−12−𝑖 

4.3 Basic CORDIC iterations: - 

Pick 𝛼𝑖 such that tan 𝛼𝑖 = 𝑑𝑖2
−𝑖, 𝑑𝑖 = {−1,1} 

So finally basic CORDIC iterations are 

𝑥𝑖+1 = 𝑥𝑖 − 𝑑𝑖𝑦𝑖2
−𝑖… (7) 
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𝑦𝑖+1 = 𝑦𝑖 + 𝑑𝑖𝑥𝑖2
−𝑖… (8) 

      𝑧𝑖+1 = 𝑧𝑖 + 𝑑𝑖𝑡𝑎𝑛
−12−𝑖… (9) 

If we always pseudo rotate by the same set of angles (with + or –signs), then the expansion 

factor k is a constant that can be precomputed. So, for N=10, we need to store ‘10’ values in 

Look up tables (LUT’s). It contains the angles that the vector needs to rotated to reach the 

final desired angle. They are 

i 𝒕𝒂𝒏−𝟏𝟐−𝒊 
0 45.0 

1 26.6 

2 14.0 

3 7.1 

4 3.6 

5 1.8 

6 0.9 

7 0.4 

8 0.2 

9 0.1 

Table 4.1: - Values in the LUT of angles w.r.t to the iterations 

Example: - Let our required angle be 30 degrees. It can be achieved as 

• 30 ≈ 45 - 26.6 + 14 - 7.1 + 3.6 + 1.8 - 0.9 + 0.4 - 0.2 + 0.1 = 30.1 

Each iteration of the algorithm can be implemented as a CORDIC element (CE) 

This CE implements 𝑖𝑡ℎ iteration of the algorithm given by below figure 

 

Fig. 4.3 CORDIC architecture using feedback network 
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Fig.4.4 Pipelined FDA architecture of CORDIC algorithm 

Here, instead of rotating a unit vector (1,0) from x-axis, we rotate a vector of magnitude k. 

i.e., we start from (k,0). This is because, if we rotate a unit vector, we get a multiplication 

factor of k at the end of all rotations.so to avoid use of multiplier, we rotate (k,0) vector 

 4.4 Time shared architecture: - 

So far, we have seen that pipeline Fully Dedicated Architecture (FDA) and feedback 

network architecture. In feedback network architecture, previous values are sent back to the 

input of CORDIC element for calculating next values. However, it may require only one 

CORDIC element, but it increases latency. In pipelined FDA, all CORDIC elements are 

connected in cascade and it may involve large circuitry. So, A folded and time-shared 

architecture is more preferred. Folding factor here defines the number of times that the 

feedback is supplied to the input. 

 

 

Fig.4.5 Time-shared architecture with Folding factors 16 
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C-slowed time-shared architecture means that it can be used for computing ‘C’ values(angles) 

and it can be better implemented using pipelining i.e., adding registers to each and every 

cordic elements. The architecture for ‘four slow folded architecture by a folding factor of ‘4’’ 

is shown below.    

 

Fig.4.6 Four slow folded architecture by a folding factor of 4 

The feedback register is replicated initially for ‘4’ times and after all the registers are retimed 

(set a different time) to reduce critical path. A simple counter-based controller is used to 

appropriately select the input to each cordic element (CE). Two MSB’s of counter are used as 

selection lines to three Multipliers at initial stage i.e., In the first four cycles, four desired 

angles (𝜃𝑑0 , 𝜃𝑑1,  𝜃𝑑2 , 𝜃𝑑3 ) and values of x0 and y0 are  given as input to CE0. All the 

subsequent cycles feed the values from CE3 to R0 to CE0. The working of algorithm for initial 

few cycles is shown in the below timing diagram. 



25 
 

 

Fig.4.7 Timing diagram of CORDIC architecture which is of a folding factor 4 

Initially Counter is loaded with 0000, and for 1st clock pulse R1 register is loaded with values 

of first iteration for 𝜃𝑑0 angle. For 2nd clock pulse, R2 register is loaded with values of second 

iteration for 𝜃𝑑0 angle and at the same clock pulse, R1 is loaded with values of 1st iteration for 

𝜃𝑑1⁡angle. Similarly for 3rd clock pulse, R3 is loaded with values of third iteration for 𝜃𝑑0, R2 

with second iteration for 𝜃𝑑1 and R1 with values of first iteration for  𝜃𝑑2. When 4th clock 

pulse is given, R0 gets the values of 4th iteration for 𝜃𝑑0, R1With values of first iteration for 

𝜃𝑑3, R2 with second iteration for 𝜃𝑑2 and R3 with values of third iteration for 𝜃𝑑1. After this, 

all four angles are, selection line of mux will be change. This process repeats for 16 clock 

cycles, and then counter overflows. 
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CHAPTER 5 

Modified CORDIC algorithm 

5.1 Limitations of basic CORDIC algorithm: - 

In the basic cordic algorithm, it requires computation of di and only then it 

conditionally adds (or) subtracts one of the operands. That means for each iteration, di needs 

to be assigned with +1 (or) -1 which is time consuming. So, in order to avoid that limitation 

or simple modification is used which eliminates that computation of di at that particular instant 

and efficient parallel architectures can be realized.  

Here, instead of calculating di at that particular instant, if we can calculate all the di 

values of a particular angle and store them previously, then these values (+1 or -1) can be 

directly used at that instant. 

5.2 Modification to the basic CORDIC algorithm: - 

A binary representation of a positive value of (considering 𝜃 in radian) for micro 

rotations can be considered as  

𝜃 = ∑ 𝑏𝑖2
−𝑖 𝑓𝑜𝑟  𝑏𝑖𝜖{0,1}

𝑁−1

𝑖=0

 

That ‘b’ stores the sign (+ or -) of the operation to be performed at that instant. But this 

representation denotes either a positive rotation = 2-i or no rotation depending on the value of 

bit bi at location ‘i’ which makes the value of ‘k’ data dependent [‘k’ is computed based on 

the values of tan-1(2-i)]. So, to avoid that, it is necessary to recode the expression to use only 

+1 or -1. 

5.3 Recoding of binary representation: - 

The bits 𝑏𝑖 in the expression can be recoded to 𝑟𝑖 𝜖 {+1, -1} as:                                   

𝜃 = ∑ 𝑏𝑖2
−𝑖

𝑁−1

𝑖=0

= ∑ 𝑟𝑖2
−(𝑖+1) +

𝑁−1

𝑖=0

20 − 2−𝑁 

                                            𝑟𝑖 = 2𝑏𝑖 − 1 𝑤ℎ𝑒𝑟𝑒  𝑟𝑖 ∈ {+1,−1} 
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This recoding requires first giving an initial fixed rotation 𝜃𝑖𝑛𝑖𝑡 to cater for the constant factor 

(20 − 2−𝑁) along with computing constant K as is done in the basic CORDIC algorithm. The 

recoding of 𝑏𝑖𝑠 as ±1 helps in formulating K as constant and is equal to: 

                                                    K = ∏ cos⁡(2−(𝑖))𝑁−1
𝑖=0  

The rotation for 𝜃𝑖𝑛𝑖𝑡 can then be first applied, where: 

                                                   𝜃𝑖𝑛𝑖𝑡= 20 − 2−𝑁 

                                                     𝑥0⁡= K cos (𝜃𝑖𝑛𝑖𝑡) 

                                                      𝑦0 = 𝐾 sin(𝜃𝑖𝑛𝑖𝑡) 

Therefore, the new iterations are  

           𝑥𝑖 = 𝑥𝑖−1 − 𝑟𝑖𝑡𝑎𝑛2
−𝑖𝑦𝑖−1… (10) 

             𝑦𝑖 = 𝑦𝑖−1 + 𝑟𝑖𝑡𝑎𝑛2
−𝑖𝑥𝑖−1… (11) 

Here, unlike 𝑑𝑖,the values of 𝑟𝑖 are predetermined, and these iterations do not include any 

computations of the 𝛼𝑖 as are done in the basic CORDIC algorithm. But here in modified 

CORDIC, a multiplication factor tan-1(2-i) is occurring in every iteration, but this is not 

advised. So, this multiplication factor can be avoided for stage i>4. i.e., tan-1(2-i) can be 

approximated to 2-i (from i>4) 

𝑡𝑎𝑛2−𝑖 ≈ 2−𝑖 

So, it is necessary for us to pre compute all the initial four values and store them in the actual 

hardware implementation, the initial ‘4’ iterations are skipped and the output value from the 

4th iteration is directly indexed from memory. Therefore, the above approximation requires 

tan-1(2-i) with 2-i. The equations implementing simplified iteration for i=M+1, M+2…. N are: 

                                                      𝑥𝑖 = 𝑥𝑖−1 − 𝑟𝑖2
−𝑖𝑦𝑖−1… (12) 

                                                      𝑦𝑖 = 𝑦𝑖−1 + 𝑟𝑖2
−𝑖𝑥𝑖−1… (13) 
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And this modification results in simple fully parallel and time-shared hardware 

implementation as shown in the figure below 

 

Fig.5.1 FDA of modified CORDIC algorithm 

5.4 Hardware optimization: - 

As the iterations now do not depend on the values of  𝛼𝑖  the values of previous 

iterations can be directly substituted in to the current iteration. As x4 and y4 are known  

For i = 5 

𝑥5 = 𝑥4 − 𝑟52
−5 𝑦4… (14) 

𝑦5 = 𝑦4 + 𝑟52
−5 𝑥4… (15) 

For i = 6 

𝑥6 = 𝑥5 − 𝑟62
−6 𝑦5… (16) 

𝑦6 = 𝑦5 + 𝑟62
−6 𝑥5… (17) 

Now by substituting equations (14), (15) values in i=6th iteration, we modify the equations 

(16), (17) as: 

𝑥6 = (1 − 𝑟5𝑟62
−11 )𝑥4 − (𝑟52

−5 + 𝑟62
−6 )𝑦4… (18) 

𝑦6 = (1 − 𝑟5𝑟62
−11)𝑦4 + (𝑟52

−5 + 𝑟62
−6 )𝑥4… (19) 

similarly, i=7th iteration can be calculated as  

𝑥7 = (1 − 𝑟5𝑟62
−11 − 𝑟5𝑟72

−12 + 𝑟7𝑟62
−13 )𝑥4 − (𝑟52

−5 + 𝑟62
−6 + 𝑟72

−7 − 𝑟5𝑟7𝑟62
−18)𝑦4 

𝑦7 = (1 − 𝑟5𝑟62
−11 − 𝑟5𝑟72

−12 + 𝑟7𝑟62
−13 )𝑦4 + (𝑟52

−5 + 𝑟62
−6 + 𝑟72

−7 − 𝑟5𝑟7𝑟62
−18)𝑥4 

However, the terms including 2−𝑥 with x > N will shift the entire value outside the range and 

they can be simply ignored. Therefore, the final iteration is 
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𝑐𝑜𝑠𝜃 = (1 − ∑ ∑ 𝑟𝑖𝑟𝑗2
−(𝑖+𝑗)

𝑁−1

𝑗=𝑖+1

𝑁−1

𝑖=0

)𝑥4 − (∑ 𝑟𝑖2
−𝑖

𝑁−1

𝑖=5

)𝑦4 

                                                      

𝑠𝑖𝑛𝜃 = (1 − ∑ ∑ 𝑟𝑖𝑟𝑗2
−(𝑖+𝑗)

𝑁−1

𝑗=𝑖+1

𝑁−1

𝑖=0

)𝑦4 + (∑ 𝑟𝑖2
−𝑖

𝑁−1

𝑖=5

)𝑥4 

here (𝑖 + 𝑗) ≤ 𝑁 

So, if all the iterations of the cordic algorithm are merged into one expression and the final 

values can be effectively computed in a single cycle 
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CHAPTER 6 

INTRODUCTION TO VERILOG 

6.1 Introduction 

       Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used    to 

model electronic systems. It is most commonly used in design and verification of digital 

circuits at the regular -transfer level of abstraction. It is also used in verification of analog 

circuits and mixed signal circuits HDLs allows the design to be simulated earlier in the design 

circuits in order to correct errors or experiments with different architectures. 

 Designs described in HDL are technology independent, easy to design and debug, and 

are usually more readable than schematics, particularly for large circuits. Verilog can be used 

to describe designs at four levels if abstractions: 

1) Algorithmic level (much like as code if, case and loop statements). 

2)  Register transfer level (RTL uses registers connected by Boolean equations) 

3) Gate level (interconnected AND, NOR etc.). 

4) Switch level (the switches are MOS transistors inside gates).   

A Verilog design consists of a hierarchy of modules. Modules encapsulate design 

hierarchy, and communicate with other modules through a set of declared input, output and 

bidirectional ports. 

Internally, a module can contain any combination of the following: net/variable 

declarations (wire, reg, integer, etc.), concurrent and sequential statement blocks, and 

instances of other modules (sub-hierarchies).  

6.2 Features of Verilog HDL 

Verilog HDL offers many useful features for hardware design. Some of them are given 

below:  

• Verilog (verify logic) HDL is general purpose hardware description language that is 

easy to learn and easy to use. It is similar in syntax to C programming language. 

Designers with C programming experience will find it easy to learn Verilog HDL. 

• Verilog HDL allows different levels of abstraction to be mixed in the same model. 

Thus, a designer can define a hardware model in terms of switches, gates, RTL, or 
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behavior code. Also, a designer needs to learn only one language for stimulus and 

hierarchical designs. 

•  Most popular logic synthesis tools support Verilog HDL. This makes it the language 

of choice for designers. 

• All fabrication vendors provide Verilog HDL libraries for post logic synthesis 

simulation. Thus, designing a chip in Verilog HDL allows the widest choice of 

vendors. 

• The Programming language interface (PLI) is a powerful feature that allows the user 

to custom C code to interact with the internal data structures of Verilog. Designers can 

customize a Verilog HDL simulator to their need with the Programming language 

interface (PLI). 

6.3 Module Declaration 

A module is the principal design entity in Verilog. The first line of a module 

declaration specifies the name and port list (arguments). The next few lines specify the I/O 

type (input, output or inout) and width of each port. The default port with is 1 bit. Then the 

port variables must be declared wire, reg. The default is wire.  

 Typically, inputs are wire since their data is latched outside the module. Outputs are 

type reg if their signals were stored inside always or initial block 

Syntax: 

             module model_ name(port_list); //module name, outputs and inputs are specified  

             input [msb: lsb] input_port_list; //inputs are taken here 

             output [msb: lsb] output_port_list; //outputs are mentioned here 

             inout [msb: lsb] inout_port_list;// inout ports are specified here 

                                   ……. statements………… 

endmodule 

Example:  

              module add_sub (add, in1, in2, out); //module add_sub inputs and outputs are taken  

              input add;                                         //defaults to wire 

              input [7:0] in1, in2, wire in1, in2; // inputs default to wire are taken here 

  output [7:0] out; 



32 
 

  reg out;                            // output default to register is declared here 

                             ………statements……... 

                       Endmodule                   // end of the program 

Verilog has four levels of modelling: 

1) The switch level Modeling. 

2) Gate- level Modeling. 

3) The Data-Flow level. 

4) The behavioral or procedural level. 

6.3.1 Switch level Modeling 

      A circuit is defined by explicitly showing how to construct it using transistors like pmos 

and nmos, predefined modules. 

Example:  

             module inverter (out, in); // module invertor, output and input ports are declared 

             output out;                        // output port is declared 

             input in;                            // input port is declared 

             Supply0 gnd;                    // supply of ground port is declared 

             Supply1 vdd;                    // supply voltage port is declared   

             nmosx1 (out, in, gnd);     // nmos transistor logic with inputs and outputs is declared 

             pmosx2 (out, in, vdd);     // pmos transistor logic with outputs and inputs is declared 

             endmodule                      // end of the program 

6.3.2 Gate level modelling: - 

      A circuit is defined by explicitly showing how to correct it using logic gates. Predefined 

modules, and the connections between them. In this first we think of our circuit as a box or 

module which is encapsulated from its outer environment, in such a way that its only 

communication with the outer environment, is through input and output ports. We then set 

out to describe structure within the module by explicitly describing its gates and sub modules, 

and how they connect with one another as well as to the module ports. 

             In other words, structural modelling is used to draw a schematic diagram for the 

circuit. As an example, consider the full-adder below. 



33 
 

Example: 

               module fulladder (a, b, sum, Cout); // module full adder is declared 

               input a, b;                                        // input ports are declared 

               output sum, Cout;                          // output ports are declared 

               xor x1(a, b, y);                               // xor gate is initiated 

               xor x2(a, b, y);                              // xor gate is initiated  

               endmodule                                    // end of the program 

6.3.3 Data-flow modelling 

Dataflow modeling uses Boolean expressions and operators. In this we use 

assign statement. 

Example: 

               module fulladder (a, b, sum, Cout); // module full adder is declared  

               input a, b;                                        // input ports are declared 

               output sum, Cout;                          // output ports are declared 

               assign sum=a^b;                            // sum is assigned to the necessary operation 

               assign Cout=a^b;                          // Cout is assigned to the necessary operation   

               endmodule                                   // end of the program 

6.3.4 Behavioral modeling  

It is higher level of modeling where behavior of logic is modelled. Verilog 

behavioral Code is inside procedure blocks, but there is an exception: some behavioral 

code also exists outside procedure blocks. 

There are two types of procedural blocks in Verilog  

Initial: initial blocks execute only once at time zero (start execution at time zero) 

Always: always blocks loop to execute over and over again; in other words, as other words 

as the name suggests, it executes always. 

An always statement executes repeatedly, it starts and its execution at other 0 ns 

Syntax: always@ (sensitivity list)  

              Begin 

              Procedural statements 

              end  
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Example: 

                   module fulladder (a, b, clk, sum); // module full adder is declared 

                   input a, b, clk;                                // input ports declared 

                   output sum;                                   // output ports declared  

                   always@ (posedgeclk)                 // always block is declared 

                   begin                                             // always block is begun             

                   sum= a+b;                                     // sum statement 

                   endmodule                                  // end of the program 

6.4 SOFTWARE DESIGN AND DEVELOPMENT  

       A description of the hardware's structure and behavior is written in a high-level hardware 

description language (usually VHDL or Verilog and those codes is then compiled and 

downloaded prior to execution. Although schematic capture can be used for design entry but 

due to more complex designs and the improvement of the language-based tools it has become 

less popular. 

        The most distinct difference between hardware and software design is the way a 

developer must think about the problem. Software developers tend to think sequentially, even 

when they are tasked to program a multithread application. Most of the time, the source code 

is always executed in that order. At the design entry phase, hardware designers must think 

and program in parallel. 

        All of the input signals are processed in parallel: inside each ore is a series of macro cells 

and interconnections routed toward their destination output signals. Therefore, the statement 

of a hardware description language creates structures, all of which are process at the very 

same time. (Normally the link between each macro cell to another macro cell usually -

synchronized to some other signal, like a common clock). 

       In a typical design, after each design entry is completed, the next step is to perform 

periods of functional simulation. This is where a simulator comes in place. It is used to execute 

the design and confirm that the correct/required outputs are produced for a given set of test 

inputs. 

       This step is to ensure the designer that his/her logic is functionally correct before going 

on to the next stage development. This is a good practice as compared to simulating a full-

scale de 
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sign entry. As the design entry gets more complex, the troubleshooting will be much difficult 

and time consuming. 

6.5 SOFTWARE TOOLS USED 

6.5.1 Xilinx Vivado 

Vivado enables developers to synthesize their designs, perform timing analysis 

examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the 

target device with the programmer. Vivado is a design environment for FPGA products from 

Xilinx, and is tightly-coupled to the architecture of such chips, and cannot be used with FPGA 

products from other vendors. 

6.5.2 Language support 

The Vivado High-Level Synthesis compiler enables C, C++ and System C programs 

to be directly targeted into Xilinx devices without the need to manually create RTL. Vivado 

HLS is widely reviewed to increase developer productivity, and is confirmed to support C++ 

classes, templates, functions and operator overloading.  

 Xilinx vivado enables simulation, verification and synthesis for the following languages  

• VHDL  

• Verilog 

• System Verilog  

6.5.3 MATLAB software: 

MATLAB (Matrix Laboratory) is a programming platform developed by MathWorks, 

which uses its proprietary MATLAB programming language. The MATLAB programming 

language is a matrix-based language which allows matrix manipulations, plotting of functions 

and data, implementation of algorithms, creation of user interfaces, and interfacing with 

programs written in other languages, including C, C++, C#, Java, Fortran and Python. It is 

used in a wide range of application domains from Embedded Systems to AI, mainly to analyze 

data, develop algorithms, and create models and applications. 

6.6 XILINX VIVADO ISE DESIGN SUITE (16.1version)  

        Xilinx is a powerful software tool that is used to design, synthesize, simulate, test and 

verify digital circuit designs. The designer can describe the digital design by either using the 

schematic entry tool or a hardware description language. In this software we will create 
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VHDL design input files – the hardware description of the logic circuit, compile VHDL 

source files, create a test bench and simulate the design to make sure of the correct operation 

of the design (functional simulation). The purpose of this is to give new users an exposure to 

the basic and necessary steps to implement and examine your own designs using ISE 

environment. In this, we will design one simple module (OR gate); however, in the future, 

you will be designing such modules and completing the overall circuit design from these 

existing files. A VHDL input file in the Xilinx environment consists of: Entity Declarations: 

module name and interface specifications (I/O) – list of input and output ports; their mode, 

which is direction of data flow; and data type. Architecture: defines a component’s logic 

operation. 

      There are different styles for the architecture body: (i)Behavioral – set of sequential 

assignment statements (ii) Data Flow – set of concurrent assignments o Structural – set of 

interconnected components A combination of these could be used, but in this tutorial, we will 

use Dataflow. In its simplest form, the architectural body will take the following format, 

regardless of the style: architecture architecture_name of entity_name is begun …  -- 

statement end architecture_name;  

      ISE (Integrated Software Environment) is a software tool produced by Xilinx for synthesis 

and analysis of HDL designs, enabling the developer to synthesize (“compile”) their designs, 

perform timing analysis, examine RTL diagrams, simulate a design’s reaction to different 

simuli, and configure the target device with the programmer. 

Xilinx is an American technology company, primarily a supplier of programmable 

logic devices. It is known for inventing FPGA.The Xilinx ISE is primarily used for circuit 

synthesis and design, while the Modelsim logic simulator is used for system-level testing. 

6.7 ISE Project Navigator: 

In this section, we introduce the reader to the main components of an “ISE Project 

Navigator” window, which allows us to manage our design files and move our design process 

from creation to synthesis and to simulation phase. 
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                             Fig 6.1 Xilinx Vivado Project Navigator window 

By opening the Xilinx vivado ISE suite, we will come to see the 3 main points. They are 

1) Quick start 

2) Tasks 

3) Information Center 

         In the Quick start block, we have created a new project, open project and open 

example project. In the Tasks, we have Manage IP, open hardware manager, Xilinx Td store 

In the Information center, we have documentation and tutorials, quick take videos and release 

notes guide. 

This section describes the four basic steps to working with a project. 

Step 1––– Creating a New Project 

This creates .xpr file and a working library. 

Step 2––– Adding Items to the project 

Projects can reference or include source files, folders for organizations, simulations, and any 

other files you want to associate with the project. You can copy files into the project directory 

or simply create mappings to files in other locations. 

Step 3––– Compiling the Files  

This checks syntax and semantics and creates the pseudo machine code that Vivado uses for 

simulation. 

Step 4––– Simulating a Design 
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This specifies the design unit you want to simulate and opens a structure tab in the workspace 

panel. 

you specify will be used to create a working library subdirectory within the Project 

In order to start ISE double, click the desktop icon:  

6.7.1 Creating a New Project 

After launching Vivado, from the startup page click the “Create New Project” 

icon.  Alternatively, you can select File -> New Project 

 

Fig 6.2. Creating new project window 

The New Project wizard will launch, click the “Next >” button to proceed 

 

                                             Fig 6.3. Guiding wizard for the project 
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Enter a project name and select a project location.  Make certain there are NO SPACES in 

either!  It’s not a bad idea to only use letters, numbers, and underscores as well.  If necessary, 

simply create a new directory for your Xilinx Vivado projects in your root drive (e.g., 

C:\Vivado).  You will likely always want to select the “Create project sub-directory” check-

box as well.  This keeps things neatly organized with a directory for each project and helps 

avoid problems.  Click the “Next >” button to proceed. 

 

 

 

  Fig 6.4. Creating a project name 

Select the “RTL Project” radial and select the “Do not specify sources at this time” check-

box.  If you don’t select the check-box the wizard will take you through some additional steps 

to optionally add preexisting items such as VHDL or Verilog source files, Vivado IP blocks, 

and. XDC constraint files for device pin and timing configuration.  For this first project you 

will add the necessary items later.  Click the “Next >” button to proceed. 
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                                           Fig 6.5. Specifying the RTL project 

You need to filter down to and select the specific part number for your project.  You can 

physically read the markings on your chip or refer to your board’s documentation to find its 

part number.  In the case of the Basys 3 it’s the Artix-7 chip that’s on the board, and the filters 

shown will help you get to the correct device that’s highlighted.  Once you select the correct 

device click the “Next >” button to proceed. 

 

 

 

                                          Fig 6.6. Choosing a board for project 

 

Click the “Finish” button and Vivado will proceed to create your project as specified. 
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                                                  Fig 6.7. Project summary 

6.8 STEPS FOR DESIGN ENTRY: 

6.8.1 Working through the Basic Project Flow: 

The Vivado project window contains a lot of information, and the information 

displayed can change depending on what part of the design you currently have open as you 

work through the steps of your project.  Keep this in mind as you work through this guide, 

because if you don’t see a specific sub-window or sub-window tab it’s possible you aren’t in 

the correct part of the design 

The “Flow Navigator” on the left side of the screen has all the major project phases 

organized from top to bottom in their natural chronological order.  You begin in the “Project 

Manager” portion of the flow and the header at the top of the screen next to the Flow 

Navigator reflects this.  This header and the corresponding highlighted section in the Flow 

Navigator will tell you which phase of the design you have open. 
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                                           Fig 6.8. Main window for the project 

6.8.2 Project Manager 

6.8.2.1 Project Settings 

Begin by clicking on “Project Settings” under the Project Manager phase of the 

Flow Navigator 

 

 

 

 

 

                                                

 

 

Fig 6.9. Project settings window 

There are a lot of settings available here for all phases of the project flow, but for now just 

select “System Verilog” from the drop-down for the “Target language” in the “General” 

project settings and click the “OK” button. 

6.8.2.2 Add Sources 

Now click on “Add Sources” under the Project Manager phase of the Flow Navigator 
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                                            Fig 6.10. Adding the source files 

Select the “Add or create design sources” radial and then click the “Next >” button. 

 

                                      Fig 6.11. Wizard that shows to the design source 

 

Click the “Create File” button or click the green “+” symbol in the upper left corner and select 

the “Create File…” option. 
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                          Fig 6.12. Creating a new file name for new design source 

Make sure the options shown are selected in the “Create Source File” popup, and for the sake 

of following along enter “convolution (Gaussian filter)” for the “File name”.  Click the “OK” 

button when finished. You can normally enter anything you like for the “File name” as long 

as it’s valid, but always make certain there are NO SPACES! 

 

Fig 6.13. Selecting the type of file and location 

 

 

Click the “Finish” button and Vivado will then bring up the “Define Module” window. 
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6.8.2.3 Define Module 

You can use the “Define Module” window to automatically write some of the VHDL code 

for you.  Additional “I/O Port Definitions” can be added by either clicking the green “+” 

symbol in the upper left or by simply clicking on the next empty line.  The “Entity name” and 

“Architecture name” will be the corresponding Verilog HDL identifiers used in the code, as 

will whatever is typed in for each “Port Name”.  Any valid Verilog HDL identifier can be 

used for any of these, but for the sake of following along enter the information as 

shown.  Make sure the proper “Direction” is set for each.  Click the “OK” button when 

finished.  

Note that if you would rather write your own code from scratch, you can simply click 

the “Cancel” button and Vivado will create a completely blank System Verilog VHDL source 

file inside your project.  If you click the “OK” button without defining any “I/O Port 

Definitions” Vivado will still write the basic Verilog HDL code structure but the port 

definition will be empty and commented out for you to uncomment and fill later.  

Also note that the port names here match the silkscreen reference designators of the 

switches and LEDs on the Basys 3 board that will be utilized for the example.  This is for the 

convenience of those following along with the Basys 3, but should not be inferred as a 

requirement by beginners; each name is simply an arbitrary identifier 
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                                          Fig 6.14. Module defining with ports 

The System Verilog HDL source file generated will be added to your project in the “Design 

Sources” folder as shown.  Double click it and it will open up in a new tab for you to 

view/edit.  All the code here was generated by the previous “Define Module” window, and 

for this example you only need to manually enter the three highlighted lines between the 

“begin” and “end” keywords 

If we want to create a simulation source, we have to select a new simulation source by right 

clicking the add source block in the panel 

 

Fig 6.15. Creating the simulation sources 
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CHAPTER-7 

MATLAB 

7.1 MATLAB Introduction  

MATLAB is a high-performance language for technical computing. It integrates 

computation visualization and programming in an easy-to-use environment. MATLAB stands 

for matrix laboratory. It was written originally to provide easy access to matrix software 

developed by LINPACK (linear system package) and EISPACK (Eigen system package) 

projects. MATLAB is therefore built on a foundation of sophisticated matrix software in 

which the basic element is matrix that does not require pre dimensioning.  

Typical uses of MATLAB  

1. Math and computation  

2. Algorithm development  

3. Data acquisition  

4. Data analysis, exploration and visualization  

5. Scientific and engineering graphics  

The main features of MATLAB  

1. Advanced algorithm for high performance numerical computation, especially in the Field 

matrix algebra  

2. A large collection of predefined mathematical functions and the ability to define one's own 

functions.  

3. Two-and three-dimensional graphics for plotting and displaying data  

4. A complete online help system  

5. Powerful matrix or vector oriented high level programming language for individual 

applications.  

6. Toolboxes available for solving advanced problems in several application areas.  

7.2 The MATLAB System  
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The MATLAB System consists of five main parts  

7.2.1 Development Environment:  

This is the set of tools and facilities that help you use MATLAB functions and files. 

Many of these tools are graphical user interfaces. It includes the MATLAB desktop and 

Command Window, command history an editor and debugger, and browsers for viewing help 

the workspace, files, and the search path.  

 7.2.2 The MATLAB Mathematical Function Library:  

This is a vast collection of computational algorithms ranging from elementary 

functions, like sum sine, cosine, and complex arithmetic, to more sophisticated functions like 

matrix inverse, matrix Eigen values, Bessel functions, and fast Fourier transforms.  

7.2.3 The MATLAB Language:  

This is a high-level matrix/array language with control flow statements, functions, data 

structures, input/output, and object-oriented programming features. It allows both 

programming in the small to rapidly create quickly programs, and "programming in the large" 

to create large and complex application programs.  

7.2.4 Graphics:  

MATLAB has extensive facilities for displaying vectors and matrices as graphs, as 

well as annotating and printing these graphs. It includes high-level functions for two-

dimensional and three-dimensional data visualization, video processing, animation, and 

presentation graphics. It also includes low-level functions that allow you to fully customize 

the appearance of graphics as well as to build complete graphical user interfaces on your 

MATLAB applications  

7.2.5 The MATLAB Application Program Interface (API):  

This is a library that allows you to write C and Fortran programs that interact with 

MATLAB. It includes facilities for calling routines from MATLAB (dynamic linking), calling 

MATLAB as a computational engine, and for reading and writing MAT-files  

7.2.6 Starting MATLAB:  

On Windows platforms, start MATLAB by double-clicking the MATLAB shortcut 

icon on your Windows desktop. On UNIX platforms, start MATLAB by typing mat lab at the 

operating system prompt. You can customize MATLAB start-up. For example, you can 
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change the directory in which MATLAB starts or automatically execute MATLAB statements 

in a script file named start-ups.  

7.2.7 MATLAB Desktop:  

When you start MATLAB, the MATLAB desktop appears, containing tools (graphical 

user interfaces) for managing files, variables, and applications associated with MATLAB. The 

following illustration shows the default desktop. You can customize the arrangement of tools 

and documents to suit your needs.  

7.3 MATLAB Working Environment  

7.3.1 MATLAB Desktop:  

MATLAB Desktop is the main MATLAB application window. The desktop contains 

five sub windows the command window, the workspace browser the current directory 

window, the command history window, and one or more figure windows, which are shown 

only when the user displays a graphic.  

The command window is where the user types MATLAB commands and expressions 

at the prompt (>>) and where the output of those commands is displayed. MATLAB defines 

as the workspace as the set of variables that the user creates in a work session. The workspace 

browser shows these variables and some information about them. Double clicking on a 

variable in the workspace browser launches the Array Editor, which can be used to obtain 

information and income instances edit certain properties of the variable.  

The current Directory tab above the workspace tab shows the contents of the current 

directory, whose path is shown in the current directory window. For example, in the windows 

operating system the path might be as follows: C-MATLAB Work, indicating that directory 

"work" is a subdirectory of the main directory MATLAB WHICH ISINSTALLED IN DRIVE 

C. clicking on the arrow in the current directory window shows a list of recently used paths. 

Clicking on the button to the right of the window allows the user to change the current 

directory.  

MATLAB uses a search path to find M-files and other MATLAB related files, which 

are organize in directories in the computer file system. Any file run in MATLAB must reside 

in the current directory or in a directory that is on search path. By default, the files supplied 

with MATLAB and math works toolboxes are included in the search path. The easiest way to 

see which directories is on the search path. The easiest way to see which directories are soon 
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the search paths, or to add or modify a search path, is to select set path from the File menu the 

desktop, and then use the set path dialog box. It is good practice to add any commonly used 

directories to the search path to avoid repeatedly having the change the current directory.  

The Command History Window contains a record of the command window, including 

both current and previous MATLAB sessions. Previously entered MATLAB commands can 

be selected and re-executed from the command History window by right clicking on a 

command or sequence of commands. This action launches a menu from which to select 

various options in addition to executing the commands. This is a use to select 34 various 

options in addition to executing the commands. This is useful feature when experimenting 

with various commands in a work session.  

7.3.2 Using the MATLAB Editor to create M-Files:  

The MATLAB editor is both a text editor specialized for creating M-files and 

graphical MATLAB debugger. The editor can appear in a window by itself, or it can be a sub 

window in the desktop, M-files are denoted by the extension m The MATLAB editor window 

has numerous pull-down menus for tasks such as saving viewing, and debugging files. 

Because it performs some simple checks and also uses color to differentiate between various 

elements of code, this text editor is recommended as the tool of choice for writing and editing 

M functions. To open the editor, type edit at the prompt opens the M-file filenames in an 

editor window ready for editing. As noted earlier the file must be in the current directory, or 

in a directory in the search path  

7.3.3 Getting Help:  

The principle way to get help online is lo use the MATLAB help browser, opened as 

a separate window either by clicking on the question mark symbol (?) on the desktop toolbar, 

or by typing help browser at the prompt in the command window. The help Browser is a web 

browser integrated into the MATLAB desktop that displays a Hypertext Markup Language 

(HTML) document. The Help Browser consists of two panes, the help navigator pane, used 

to find information, and the display pane, used to view the information. Self- explanatory tabs 

other navigator pane is used to perform a scratch. For example, help on a specific function is 

obtained by selecting the search tab, selecting Function Name as the Search Type, and then 

typing in the function name in the Search for field. It is good practice to open the Help Browser 
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at the beginning of a MATLAB session to have help readily available during code 

development or other MATLAB task.  

Another way to obtain for a specific function is by typing doc followed by the function 

name at the command prompt. For example, typing doc format displays documentation for 

the function called format in the display pane of the Help Browser. This command opens the 

browser if it is not already open. 

 M-functions have two types of information that can be displayed by the user The first 

is called the HI line, which contains the function name and alone line description the second 

is a block of explanation called the Help text block. Typing help at the prompt followed by a 

function name displays both the HI line and the Help text for that function in there command 

window. Typically look for followed by a keyword displays all the HI lines that contain that 

keyword. This function is useful when looking for a particular topic without knowing the 

names of applicable functions. For example, typing look for edge at the prompt displays the 

HI lines containing that keyword. Because the HI line contains the function name, it then 

becomes possible to look at specific functions using the other help methods. Typing look for 

edge-all at the prompt displays the HI line of all functions that contain the word edge in cither 

the HI line or the Help text block. Words that contain the characters edge also are detected. 

For example, the HI line of a function containing the word poly edge in the H1 linear Help 

text would also be displayed. 

 7.4 Saving and Retrieving a Work Session  

There are several ways to save and load an entire work session or selected workspace 

variables in MATLAB. The simplest is as follows. To save the entire workspace, simply right-

click on any blank space in the workspace Browser window and select Save Workspace as 

from the menu that appears. This opens a directory window that allows naming the file and 

selecting any folder in the system in which to save it. Then simply click Save To save a 

selected variable from the workspace, select the variable with a left click and then right-click 

on the highlighted area. Then select Save Selection As from the menu that appears. This again 

opens a window from which a folder can be selected to save the variable.  

To select multiple variables, use shift click or control click in the familiar manner, and 

then use the procedure just described for a single variable. All files are saved in the 

doubleprecision, binary format with the extension mat. These saved files commonly are 
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referred to as MAT-files. For example, a session named, says mywork_2012-02-10, and 

would appear as the MAT-file mywork_2012_02_10.mat when saved. Similarly, a saved 

video called final video will appear when saved as final_ video. Mat. 

To load saved workspaces and/or variables, left-click on the folder icon on the toolbar 

of the workspace Browser window. This causes a window to open from which a folder 

containing MAT-file or selecting open causes the contents of the file to be restored in the 

workspace Browser window. It is possible to achieve the same results described in the 

preceding paragraphs by typing save and load at the prompt with the appropriate file names 

and path information. This approach is not as convenient, but it is used when formats other 

than those available in the menu method are required. 

 7.4.1 Graph Components:   

MATLAB displays graphs in a special window known as a figure. To create a graph, 

you need to define a coordinate system. Therefore, every graph is placed within Axes, which 

are contained by the figure. The actual visual representation of the data is achieved with 

graphics objects like lines and surfaces. These objects are drawn within the coordinate system 

defined by the axes, which MATLAB automatically creates specifically to accommodate the 

range of the data. The actual data is stored as properties of the graphics objects.  

7.4.2 Plotting Tools 

Plotting tools are attached to figures and create an environment for creating Graphs. 

These tools enable you to do the following: 

 • Select from a wide variety of graph types  

• Change the type of graph that represents a variable  

• See and set the properties of graphics objects  

• Annotate graphs with text, arrows, etc. 

 • Drag and drop data into graphs  

Display the plotting tools from the View menu or by clicking the plotting tools icon in the 

figure toolbar, as shown in the following picture.  

7.4.3 Editor/Debugger  

Use the Editor/Debugger to create and debug M-files, which are programs you write 

to run MATLAB functions. The Editor/Debugger provides a graphical user interface for text 

editing, as well as for M-file debugging.  
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CHAPTER 8 

SIMULATED OUTPUTS 

8.1 simulated outputs from MATLAB: 

Basic CORDIC algorithm and modified CORDIC algorithm are simulated and results are 

obtained using MATLAB software. The results are given below followed by their codes 

respectively.  

8.1.1 MATLAB code for basic cordic algorithm:  

clc 

clear all 

close all 

atheta = [0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 99]; 

k=1 

sin = []; 

cos = []; 

tan = []; 

for i = 0:9 

    r=atan(2^(-1*i)); 

    tan(i+1) = (180*r)/pi; 

end 

for i= 0:9 

    k=k* sqrt(1+(2^(-2*i))); 

end 

k=1/k; 

for p=1:21 

   rtheta=atheta(p); 

x = [k]; 

y = [0]; 

wtheta = 0; 

theta = [0]; 
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for i=1:10 

    if wtheta<rtheta 

        sigma=-1; 

    else 

        sigma=1; 

    end 

    x(i+1) = x(i)+(sigma*(y(i)*(2^(-(i-1))))); 

    y(i+1) = y(i)-(sigma*(x(i)*(2^(-(i-1))))); 

    wtheta = wtheta-(sigma*tan(i)); 

    theta(i+1) = wtheta; 

end 

sin(p) = y(11) 

cos(p) = x (11) 

end 

stem (atheta, sin) 

grid on 

figure 

stem (atheta, cos) 

grid on  
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Fig 8.1 output showing results of sine and cosine waves using basic CORDIC algorithm 

8.1.2 MATLAB code for modified cordic algorithm: 

clc 

clear all 

close all 

atheta = [-99 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20  

-15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 99]; 

k=1; 

l=length(atheta); 

sin = []; 

cos = []; 

for i= 0:9 

k=k* sqrt(1+(2^(-2*i))); 

end 

k=1/k; 

tan = []; 

for i=0:9 

r=atan(2^(-1*i)); 

tan(i+1) = (180*r)/pi; 

end 

for p = 1: l 

rtheta=atheta(p); 

x = [k]; 

y = [0]; 

wtheta=0; 
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theta = [0]; 

b = []; 

for i=1:10 

if wtheta>rtheta 

b(i)=0; 

wtheta=wtheta-tan(i); 

else 

b(i)=1; 

wtheta = wtheta+tan(i); 

end 

end 

for i=1:10 

r(i)=2*b(i)-1; 

end 

for i=1:10 

x(i+1) = x(i)-(r(i)*(y(i)*(2^(-(i-1))))); 

y(i+1) = y(i)+(r(i)*(x(i)*(2^(-(i-1))))); 

end 

sin(p) = y (11); 

cos(p) = x (11); 

end 

stem (atheta, sin) 

title ("sine wave form") 

xlabel ("angle in degrees") 

ylabel ("sine of angle") 
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grid on 

figure 

stem (atheta, cos) 

title ("cosine wave form") 

xlabel ("angle in degrees") 

ylabel ("cosine of angle") 

grid on 

 

 

Fig 8.2 output showing results of sine and cosine waves using modified CORDIC algorithm 

The below table shows the values of cosine and sine with respective to the angles (θ). The 

values of sine and cosine values using basic CORDIC and modified CORDIC are calculated. 

The differences are also calculated and are shown in the table below  
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θ in 

degrees 

Value 

of cos θ 

Basic 

CORDIC 

(cosθ) 

Modified  

CORDIC 

(cosθ) 

difference 

-90 0.0000 0.0012 0.0012 0.0000 

-85 0.0871 0.0859 0.0859 0.0000 

-80 0.1736 0.1749 0.1749 0.0000 

-75 0.2588 0.2586 0.2586 0.0000 

-70 0.3420 0.3435 0.3435 0.0000 

-65 0.4226 0.4228 0.4228 0.0000 

-60 0.5000 0.4989 0.4989 0.0000 

-55 0.5735 0.5738 0.5738 0.0000 

-50 0.6427 0.6418 0.6418 0.0000 

-45 0.7071 0.7080 0.7062 0.0018 

-40 0.7660 0.7669 0.7669 0.0000 

-35 0.8191 0.8190 0.8190 0.0000 

-30 0.8660 0.8666 0.8666 0.0000 

-25 0.9063 0.9062 0.9062 0.0000 

-20 0.9396 0.9391 0.9391 0.0000 

-15 0.9659 0.9660 0.9660 0.0000 

-10 0.9848 0.9846 0.9846 0.0000 

-05 0.9961 0.9963 0.9963 0.0000 

 00 1.0000 1.0000 1.0000 0.0000 

 05 0.9961 0.9963 0.9963 0.0000 

 10 0.9848 0.9846 0.9846 0.0000 

 15 0.9659 0.9660 0.9660 0.0000 

 20 0.9396 0.9391 0.9391 0.0000 

 25 0.9063 0.9062 0.9062 0.0000 

 30 0.8660 0.8666 0.8666 0.0000 

 35 0.8191 0.8190 0.8190 0.0000 

 40 0.7660 0.7669 0.7669 0.0000 

 45 0.7071 0.7062 0.7080 0.0018 

 50 0.6427 0.6418 0.6418 0.0000 

 55 0.5735 0.5738 0.5738 0.0000 

 60 0.5000 0.4989 0.4989 0.0000 

 65 0.4226 0.4228 0.4228 0.0000 

 70 0.3420 0.3435 0.3435 0.0000 

 75 0.2588 0.2586 0.2586 0.0000 

 80 0.1736 0.1749 0.1749 0.0000 

 85 0.0871 0.0859 0.0859 0.0000 

 90 0.0000 0.0012 0.0012 0.0000 

 

Table 8.1 comparison of CORDIC and modified CORDIC cosine values 
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θ in 

degrees 

Value 

of sin θ 

Basic 

CORDIC 

(sinθ) 

Modified 

CORDIC 

(sinθ) 

difference 

-90 -1.0000 -1.0000 -1.0000 0.0000 

-85 -0.9961 -0.9963 -0.9963 0.0000 

-80 -0.9848 -0.9846 -0.9846 0.0000 

-75 -0.9659 -0.9660 -0.9660 0.0000 

-70 -0.9396 -0.9391 -0.9391 0.0000 

-65 -0.9063 -0.9062 -0.9062 0.0000 

-60 -0.8660 -0.8666 -0.8666 0.0000 

-55 -0.8191 -0.8190 -0.8190 0.0000 

-50 -0.7660 -0.7669 -0.7669 0.0000 

-45 -0.7071 -0.7062 -0.7080 0.0018 

-40 -0.6427 -0.6418 -0.6418 0.0000 

-35 -0.5735 -0.5738 -0.5738 0.0000 

-30 -0.4999 -0.4989 -0.4989 0.0000 

-25 -0.4226 -0.4228 -0.4228 0.0000 

-20 -0.3420 -0.3435 -0.3435 0.0000 

-15 -0.2588 -0.2586 -0.2586 0.0000 

-10 -0.1736 -0.1749 -0.1749 0.0000 

-05 -0.0871 -0.0859 -0.0859 0.0000 

 00 0.0000 -0.0012 0.0012 0.0000 

 05 0.0871 0.0859 0.0859 0.0000 

 10 0.1736 0.1749 0.1749 0.0000 

 15 0.2588 0.2586 0.2586 0.0000 

 20 0.3420 0.3435 0.3435 0.0000 

 25 0.4226 0.4228 0.4228 0.0000 

 30 0.4999 0.4989 0.4989 0.0000 

 35 0.5735 0.5738 0.5738 0.0000 

 40 0.6427 0.6418 0.6418 0.0000 

 45 0.7071 0.7080 0.7062 0.0018 

 50 0.7660 0.7669 0.7669 0.0000 

 55 0.8191 0.8190 0.8190 0.0000 

 60 0.8660 0.8666 0.8666 0.0000 

 65 0.9063 0.9062 0.9062 0.0000 

 70 0.9396 0.9391 0.9391 0.0000 

 75 0.9659 0.9660 0.9660 0.0000 

 80 0.9848 0.9846 0.9846 0.0000 

 85 0.9961 0.9963 0.9963 0.0000 

 90 1.0000 1.0000 1.0000 0.0000 

Table 8.2 comparison of CORDIC and modified CORDIC sine values 
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8.2 Simulated outputs from VERILOG:  

8.2.1 VERILOG code for modified CORDIC algorithm: 

`timescale 1ns/100 ps 

  module m_cordic (clock, angle, Xin, Yin, Xout, Yout); 

   parameter c_parameter = 16;   // bit width of input and output data 

   localparam STG = c_parameter ; // similar bit width of vectors X and Y  

   input                      clock; 

   input  signed       [31:0] angle; 

   input  signed  [c_parameter-1:0] Xin; 

   input  signed  [c_parameter-1:0] Yin; 

   output signed    [c_parameter :0] Xout; 

   output signed    [c_parameter :0] Yout; 

   //arctan_table 

   // Note: The atan_table was chosen to be 31 bits wide giving resolution up to atan(2^-30) 

   wire signed [31:0] atan_table [0:30]; 

   // upper 2 bits = 2'b00 which represents 0 - PI/2 range 

   // upper 2 bits = 2'b01 which represents PI/2 to PI range 

   // upper 2 bits = 2'b10 which represents PI to 3*PI/2 range (i.e. -PI/2 to -PI) 

   // upper 2 bits = 2'b11 which represents 3*PI/2 to 2*PI range (i.e. 0 to -PI/2) 

   // The upper 2 bits therefore tell us which quadrant we are in. 

   assign atan_table[00] = 32'b00100000000000000000000000000000; // 45.000 degrees -> 

atan(2^0) 

   assign atan_table[01] = 32'b00010010111001000000010100011101; // 26.565 degrees -> 

atan(2^-1) 

   assign atan_table[02] = 32'b00001001111110110011100001011011; // 14.036 degrees -> 

atan(2^-2) 

   assign atan_table[03] = 32'b00000101000100010001000111010100; // atan(2^-3) 

   assign atan_table[04] = 32'b00000010100010110000110101000011; 

   assign atan_table[05] = 32'b00000001010001011101011111100001; 

   assign atan_table[06] = 32'b00000000101000101111011000011110; 

   assign atan_table[07] = 32'b00000000010100010111110001010101; 

   assign atan_table[08] = 32'b00000000001010001011111001010011; 

   assign atan_table[09] = 32'b00000000000101000101111100101110; 

   assign atan_table[10] = 32'b00000000000010100010111110011000; 

   assign atan_table[11] = 32'b00000000000001010001011111001100; 

   assign atan_table[12] = 32'b00000000000000101000101111100110; 

   assign atan_table[13] = 32'b00000000000000010100010111110011; 

   assign atan_table[14] = 32'b00000000000000001010001011111001; 

   assign atan_table[15] = 32'b00000000000000000101000101111101; 
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   assign atan_table[16] = 32'b00000000000000000010100010111110; 

   //registers 

   //stage outputs 

   reg signed [c_parameter :0] X [0:STG-1]; 

   reg signed [c_parameter :0] Y [0:STG-1]; 

  // reg signed    [31:0] Z [0:STG-1]; // 32bit 

  reg signed [31:0]Z; 

   //------------------------------------------------------------------------------ 

   //                               stage 0 

   //------------------------------------------------------------------------------ 

   wire                 [1:0] quadrant; 

   assign   quadrant = angle[31:30]; 

   always @(posedge clock) 

   begin //rotation angle is in the -pi/2 to pi/2 range.  If not then pre-rotate 

      case (quadrant) 

         2'b00, 

         2'b11:   // no pre-rotation needed for these quadrants 

         begin    // X[n], Y[n] is 1 bit larger than Xin, Yin, but Verilog handles the assignments 

properly 

            X[0] <= Xin; 

            Y[0] <= Yin; 

            Z <= angle; 

         end 

         2'b01: 

         begin 

            X[0] <= -Yin; 

            Y[0] <= Xin; 

            Z <= {2'b00,angle[29:0]}; // subtract pi/2 from angle for this quadrant 

         end 

         2'b10: 

         begin 

            X[0] <= Yin; 

            Y[0] <= -Xin; 

            Z<= {2'b11,angle[29:0]}; // add pi/2 to angle for this quadrant 

         end 

      endcase 

   end 

  reg b[0:STG-1]; 

 integer j; 

   always @(Z) 
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   begin 

   for (j=0; j <=(STG-1); j=j+1) 

   begin 

   if (Z[31]==1'b1) 

   begin 

   b[j] = 1'b1; 

   Z =Z+atan_table[j]; 

   end 

   else 

   begin 

   b[j]=1'b0; 

   Z=Z-atan_table[j]; 

   end  

   end 

   end 

   //------------------------------------------------------------------------------ 

   //                           generate stages 1 to STG-1 

   //------------------------------------------------------------------------------ 

   genvar i; 

   generate 

   for (i=0; i <= (STG-1); i=i+1) 

   begin: XYZ 

      wire signed  [c_parameter :0] X_shr, Y_shr; 

    

      assign X_shr = X[i] >>> i; // signed shift right 

      assign Y_shr = Y[i] >>> i; 

         always @(posedge clock) 

      begin 

         // add/subtract shifted data 

         X[i+1] <= b[i] ? X[i] +Y_shr         : X[i] - Y_shr; 

         Y[i+1] <= b[i] ? Y[i] - X_shr         : Y[i] +X_shr; 

      end 

   end 

   endgenerate 

   //------------------------------------------------------------------------------ 

   //                                 output 

   //------------------------------------------------------------------------------ 

   assign Xout = X[STG-1]; 

   assign Yout = Y[STG-1]; 

endmodule 
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8.2.2 VERILOG code for test bench for modified CORDIC algorithm: 

`timescale 1ns/100 ps 

module test(); 

localparam  SZ = 16; 

reg  [SZ-1:0] Xin, Yin; 

reg  [31:0] angle; 

wire [SZ:0] Xout, Yout; 

reg         clk; 

//localparam FALSE = 1'b0; 

//localparam TRUE = 1'b1; 

localparam VALUE = 32000/1.647; // reduce by a factor of 1.647 since thats the gain of the 

system 

reg signed [63:0] i; 

m_cordic sin_cos (clk, angle, Xin, Yin, Xout, Yout); 

initial 

begin 

   $write("Starting sim"); 

   clk = 1'b0; 

   angle = 0; 

   Xin = VALUE;                     // Xout = 32000*cos(angle) 

   Yin = 1'd0;                     // Yout = 32000*sin(angle) 

end 

always #5 clk=~clk; 

always @(posedge clk) 

begin 

#2; 

for (i = 0; i < 360; i = i + 1)     // from 0 to 359 degrees in 1 degree increments 

 begin 

  @(posedge clk); 

     angle = ((1 << 32) *i)/360;   // example: 45 deg = 45/360 * 2^32 = 

32'b00100000000000000000000000000000 = 45.000 degrees -> atan (2^0) 

      $monitor ("time =%d angle = %d, %h”, $time, i, angle); 

      end 

end 

endmodule 
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Fig 8.3 Verilog output showing results of sine and cosine waves using modified CORDIC  

 

Fig 8.4 Power report of synthesized design 
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Fig 8.5 RTL schematic of design 

 

 

 

Fig 8.5.1 calculation of sign (+, -) for angles(z) 
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Fig 8.5.2 Modified cordic block  

 

 

 

Fig 8.6 memory utilization of synthesized design 
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CONCLUSION 

DDFS architecture generates sine and cosine waveforms which are used in communication 

systems. In basic design of DDFS architecture, it uses large amount of LUTs as it stores all 

values of angles. So, for implementation of DDFS architecture, a better and new algorithm, 

Modified Cordic algorithm is studied. It uses only shifting, add and subtract operations and 

also it uses very few LUTs. The modified cordic algorithm decreases hardware complexity 

when compared to conventional cordic algorithm. Therefore, the modified cordic algorithm 

is executed in MATLAB to test the working of the algorithm and the algorithm is also 

designed in Verilog, verified for individual angles and the RTL schematic of design, power, 

memory utilization reports of synthesized design are observed.  
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